The genetic structure of natural bacteriophage populations is poorly understood. Recent metagenomic studies suggest that phage biogeography is characterized by frequent migration. Using virus samples mostly isolated in Southern California, we recently showed that very little population structure exists in segmented RNA phage of the Cystoviridae family due to frequent segment reassortment (sexual genetic mixis) between unrelated virus individuals. Here we use a larger genetic dataset to examine the structure of Cystoviridae phage isolated from three geographic locations in Southern New England. We document extensive natural variation in the physical sizes of RNA genome segments for these viruses. In addition, consistent with earlier findings, our phylogenetic analyses and calculations of linkage disequilibrium (LD) show no evidence of within-segment recombination in wild populations. However, in contrast to the prior study, our analysis finds that reassortment of segments between individual phage plays a lesser role among cystoviruses sampled in New England, suggesting that the evolutionary importance of genetic mixis in Cystoviridae phage may vary according to geography. We discuss possible explanations for these conflicting results across the studies, such as differing local ecology and its impact on phage growth, and geographic differences in selection against hybrid phage genotypes.